

NEW

ThermoScrew TS U8 Gecko

One anchor - simply universal.

- > for all insulation thicknesses
- > for all building materials classes A, B, C, D, E
- > for all usual ETICS insulation materials
- > easy to use
- > a high degree of installation safety

Highlights:

Advantages:

- only one dowel for all insulation thicknesses from 100 mm guarantees cost saving, optimal storage and availability
- > suitable for all usual insulation boards (EPS, XPS, PU, mineral wool, phenolic resin)
- only one positioning tool from 400 mm of insulation thickness
- ▶ ETA for all building material classes A, B, C, D and E
- innovative expansion area of 30 mm provides for optimal fastening in all commercial building materials
- easy to use due to easily comprehensible and easily manageable positioning technology
- > a high degree of installation safety no misses of the drill holes due to 2-stage positioning technology
- > no dowel marks due to extra deep recess of the helix in the insulation material
- ► the lowest CHI value on the market for ETICS screwing dowel with metal screw free of thermal bridges (χ = 0.000 W/ K) from 100 mm of insulation thickness *
- > suitable for duplication of insulation layers with supplementary set tolerance compensation up to 190 mm possible
- optimal screw coil construction for fast, time-saving and secure processing
- installation opening sealable with PU foam or plug

Safety provided by the anchoring zone with the proven KEW 3 partition

Proved by tests and confirmed by the millions of applications by users:

the proven 3-part anchoring zone ensures safety and ease of installation.

- I high contact pressing force effect due to power distribution
- optimal central screw guidance
- I high tuft retention

ETA

ETA as multiple fixing of bonded thermal insulation composite systems according to ETAG 004 for use categories A/B/C /D/E.

Facade with ETICS

Installation

Building material suitability

	Building material groups	Name	Short name according to DIN (German Industri- al Standard)	Use category according to ETAG 014
te	standard concrete	standard concrete	C	A
oncrete	concrete with porous	lightweight concrete	LB	D
0	microstructure	reinforced porous concrete boards	Ppl / PPpl	E
	building material with	solid brick	Mz	В
	dense microstructure	clinker brick	Mz	В
		lime sand solid stone	KS	В
	perforated building	vertically perforated brick	HLz	C
	material with dense microstructure	perforated lime sand stone	KSL	C
		lime sand hollow stone	KSL	C
		concrete hollow stone	Hbn	C
	solid bricks with porous	lightweight solid bricks	VbI	В
	microstructure	porous concrete	PB/PP	E
~	perforated building	vertically perforated lightweight brick	HLz	C
rickwork	material with porous microstructure	lightweight concrete hollow stone	Hbl	(
Bri	natural stone with dense i	microstructure		C

Perforated bricks

Perforated bricks with porous microstructure

Natural stone with dense microstructure

Solid bricks with porous microstructure

Insulation material suitability

Insulation material	Design	Suitable
expandable polystyrene (EPS)	boards	✓
extruded rigid polystyrene foam (XPS)	boards	√
polyurethane boards (PU boards)	boards	✓
mineral wool (glass)	boards	✓
mineral wool (stone)	boards	✓

Pre-drilling in the insulation materials with higher density.

Thermal transition

Dowel type	Design	Insulation material thickness h _D [mm]	Point thermal transmission coefficient $\chi \\ [\text{W/K}]$
	old building	≥ 100	0
TS U8/40 gecko with foam filling	new	100 - < 150	0,001
with roun filling	building	≥ 150	0

^{*} with foam filling in the old or new building from an insulation strength of min. 150 mm

Range

		Ø D Ø dowel Ø drill	LD dowel length	hD min. drilling depth	h_{ef} min. anchoring depth	h _D insulation thickness	Amount
Name	Product no.	[mm]	[mm]	[mm]	[mm]	[mm]	St./VE
TS U8/40 Gecko	38400	8	100	80 ¹⁾ +hD	30	100 - 400	150

 $^{1)}$ when $t_{tol} = 40 \text{ mm}$

Name	Product no.	Amount pieces/VE
tubing plugs TS ST	38402	150
setting and screwing tool TS SW 400	38406	1

Technical data

During the assessing the ETA 08/0314 should be noticed.

Characteristic tensile capacity $N_{_{Rk}}^{\quad \, 2)}$ in [kN] per single dowel in concrete and masonry

Anchoring base	Use category according to ETAG 014	Gross density class (p) [kg/dm³]	Compression strength class (f) [N/mm²]	Drilling process	N _{rk} [kN]
Concrete C12/15 (EN 206-1)	A			hammer drilling	1,5
Concrete C50/60 (EN 206-1)	Α			hammer drilling	1,5
Lime sand solid stone, KS DIN V 106:2005-10 / EN 771-2:2011	В	≥ 1,8	12	hammer drilling	1,5
Building bricks, Mz for example according to DIN V 18152-100:2005-10 / EN 771-3:2011	В	≥ 1,7	12	hammer drilling	1,5
Lightweight concrete solid block Vbl 2 for example according to DIN V 18152-100:2005-10/EN 771-3:2011	В	≥ 0,8	2	hammer drilling	0,75
Lightweight concrete solid block VbI 4 for example according to DIN V 18152-100:2005-10/EN 771-3:2011	В	≥ 0,8	4	hammer drilling	1,2
Vertically perforated brick HLz for example according to DIN 105-100:2012-01/EN 771-1:2011 external web thickness \geq 12 mm	C	≥ 1,0	12	rotary drilling	0,9
Perforated lime sandstone, KS L for example according to DIN V 106:2005-10/EN 771-2:2011 external web thickness \geq 20 mm	C	≥ 1,4	12	rotary drilling	1,5
Lightweight concrete hollow block 4K Hbl for example according to DIN V 18151-100:2005-10 / EN 771-3:201	11 C	≥ 0,9	2	rotary drilling	0,75
Lightweight concrete hollow block 1K Hbl for example according to DIN V 18151-100:2005-10 / EN 771-3:201	1 C	≥ 0,8	2	rotary drilling	0,9
Vertically perforated brick HIz 250x380x235	C	≥ 1,0	6	rotary drilling	0,5
Porous lightweight concrete, LAC 4 for example according to EN 1520	D	≥ 1,0	4	hammer drilling	0,4/0,93)
Porous lightweight concrete, LAC 6 for example according to EN 1520	D	≥ 1,0	6	hammer drilling	0,5/1,23)
Porous concrete PP4-0,5 DIN V 4165-100:2005-10 for example according to EN 771-4:20111	E	≥ 0,5	4	rotary drilling	0,3/0,753)

Installation measurements for concrete and brickwork

Effective anchoring depth	h _{ef} =	[mm]	30 / 504)
Drill hole depth	h ₁ 3	[mm]	40 / 604)
Drill hole diameter	$d_0 =$	[mm]	8
Minimal distances and dimencions			
minimal thickness of building component	h =	[mm]	100
Minimal axis distance	$s_{min} =$	[mm]	100
Minimal range distance	$c_{min}^{} =$	[mm]	100

- If other national regulations are not valid then the partial safety coefficient of 2.0 γ_M should be used.
 Is valid for effective anchoring depth of h_{ef} ≥ 50mm deviating from the standard of h_{ef} ≥ 30mm.
 The anchoring depth, mentioned in the pos. 2 is valid only for all anchoring depths of h_{ef} ≥ 50 mm, which are approved and enlarged in the building materials category D.

This information sheet is meant only as non-binding advice. Our employees can give you exact information about products. All information in this catalogue should be adjusted to the local conditions

 $Subject to\ errors, technical\ and\ assortment\ changes\ excepted.\ Liability\ for\ misprints\ and\ print\ faults$ is excluded.

© KEW Kunststofferzeugnisse GmbH Wilthen

Art.Nr.: 80101

KEW Kunststofferzeugnisse GmbH Wilthen Dresdener Straße 19 02681 Wilthen

Telephone +49 3592 3853 0 www.kew-werke.de Fax +49 3592 3853 51 e-mail: info@kew-werke.de